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System Identification Using Binary Sensors
Le Yi Wang, Senior Member, IEEE, Ji-Feng Zhang, Senior Member, IEEE, and G. George Yin, Fellow, IEEE

Abstract—System identification is investigated for plants that
are equipped with only binary-valued sensors. Optimal identifica-
tion errors, time complexity, optimal input design, and impact of
disturbances and unmodeled dynamics on identification accuracy
and complexity are examined in both stochastic and deterministic
information frameworks. It is revealed that binary sensors impose
fundamental limitations on identification accuracy and time com-
plexity, and carry distinct features beyond identification with reg-
ular sensors. Comparisons between the stochastic and determin-
istic frameworks indicate a complementary nature in their utility
in binary-sensor identification.

Index Terms—Binary sensors, estimation, system identification,
time complexity.

I. INTRODUCTION

B INARY-VALUED sensors are commonly employed
in practical systems. Usually they are far more cost

effective than regular sensors. In many applications they are
the only ones available during real-time operations. There are
numerous examples, such as switching sensors for exhaust
gas oxygen, ABS, shift-by-wire, in automotive applications;
industry sensors for brush-less dc motors, liquid levels, pressure
switches; chemical process sensors for vacuum, pressure, and
power levels; traffic condition indicators in the asynchronous
transmission mode (ATM) networks; gas content sensors (CO,

, , etc.) in gas and oil industry. In medical applications,
estimation and prediction of causal effects with dichotomous
outcomes are closely related to binary-sensor systems. Before
proceeding further, we present examples in three different
application areas.1

1) ATM ABR Traffic Control [28] : An ATM network con-
sists of sources, switches, and destinations. Due to varia-
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1In all these examples, as well as many other applications, actual systems
are discrete-time and involve signal quantization or data compression for com-
puter or digital communication networks implementations. Quantization errors
are usually negligibly small. This paper deals with discrete-time, analog-valued
signals.

tions in other higher priority network traffic, such as con-
stant bit rate (CBR) and variable bit rate (VBR), an avail-
able bit rate (ABR) connection experiences significant
uncertainty on the available bandwidth during its oper-
ation. A physical or logical buffer is used in a switch to
accommodate bandwidth fluctuations. The actual amount
of bandwidth an ABR connection receives is provided to
the source using rate-based closed-loop feedback control.
One typical technique for providing traffic information
is relative rate marking, which uses two fields in the re-
source management (RM) cell—the no increase (NI) bit
and the congestion indication (CI) bit. The NI bit is set
when the queue reaches length, and the CI bit is set
when the queue length reaches ( ).

In this system, the queue length is not directly available
for traffic control. The NI and CI bits indicate merely
that it takes values in one of the three uncertainty sets [0,

], ( ] and ( , ). This can be represented by a
typical case of tracking control with two binary sensors.
It is noted that the desired queue length is usually a value
between and , rather than or .

2) LNT and Air-to-Fuel Ratio Control With an EGO
Sensor [36], [37]: In automotive and chemical process
applications, oxygen sensors are widely used for evalu-
ating gas oxygen contents. Inexpensive oxygen sensors
are switching types that change their voltage outputs
sharply when excess oxygen in the gas is detected. In
particular, in automotive emission control, the exhaust
gas oxygen sensor (EGO or HEGO) will switch its out-
puts when the air-to-fuel ratio in the exhaust gas crosses
the stoichiometric value.

To maintain conversion efficiency of the three-way cat-
alyst or to optimize the performance of a lean NOx trap
(LNT), it is essential to estimate the internally stored NOx
and oxygen. In this case the switching point of the sensor
has no direct bearing with the control target. The idea
of using the switching sensor for identification purposes,
rather than for control only, has resulted in a new emis-
sion control strategy [36], [37].

3) Identification of Binary Perceptrons: There is an in-
teresting intersection between this study and statistical
learning theory in neural networks. Consider an unknown
binary perceptron that is used to represent a dynamic
relationship:

where is the known neuron firing threshold,
are the weightings to be learned, and

is a binary-valued function switching at 0. This
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learning problem can be formulated as a special case
of binary-sensor identification without disturbances or
unmodeled dynamics. Traditional neural models, such as
McCulloch–Pitts and Nagumo–Sato models, contain a
neural firing threshold that introduces naturally a binary
function [3], [13], [15], [23]. Fundamental stochastic
neural learning theory studies the stochastic updating
algorithms for neural parameters [32]–[34].

A. Problems

The use of binary sensors poses substantial difficulties
since only very limited information is available for system
modeling, identification and control. Since switching sensors
are nonlinear components, studies of their roles and impact on
systems are often carried out in nonlinear system frameworks,
such as sliding mode control, describing function analysis,
switching control, hybrid control, etc. In these control schemes,
the switching points of the sensors are directly used to define a
control target. However, their fundamental impact on system
modeling and identification is largely unexplored. This paper
intends to study the inherent consequences of using switching
sensors in system identification and its potential in extending
control capabilities.

The main scenario, which has motivated this work, is
embodied in many applications in which modeling of such
systems is of great importance in performing model predictive
control, optimal control strategy development, control adapta-
tion, etc. When inputs can be arbitrarily selected within certain
bounds and outputs are measured by regular sensors, such
identification problems have been extensively studied in the
frameworks of either traditional stochastic system identifica-
tion or worst-case identification. The issues of identification
accuracy, convergence, model complexity, time complexity,
input design, persistent excitation, identification algorithms,
etc., have been pursued by many researchers. A vast literature
is now available on this topic; see [19] and [22], among others.

Some fundamental issues emerge when the output sensor is
limited to be binary-valued: How accurate can one identify the
parameters of the system? How fast can one reduce uncertainty
on model parameters? What are the optimal inputs for fast iden-
tification? What are the conditions for parameter convergence?
What is the impact of unmodeled dynamics and disturbances on
identification accuracy and time complexity? In contrast to clas-
sical system identification, answers to these familiar questions
under switching sensors depart dramatically from the traditional
setup.

It will be shown that binary sensors increase time complexity
significantly; the optimal inputs differ from those in traditional
identification; identification characteristics depart significantly
between stochastic and deterministic noise representations; and
unmodeled dynamics have fundamental influence on identifica-
tion accuracy of the modeled part. Contrast to traditional system
identification in which the individual merits of stochastic versus
worst-case frameworks are still hotly debated, these two frame-
works complement each other in binary-sensor identification
problems.

B. Organization of the Paper

The paper is organized as follows. After a brief problem for-
mulation in Section II, we start our investigation in Section III
on system identification in a stochastic framework. Identifi-
cation input design, convergence of the estimates, upper and
lower bounds on identification errors, and time complexity
are established. Section IV studies the identification problem
when the disturbance is viewed unknown-but-bounded as in a
worst-case framework. The results are significantly different
from that of Section III. Identification time complexity and
error lower bounds are established first, underscoring an
inherent relationship between identification time complexity
and the Kolmogorov -entropy. Identification input design
and upper bounds on identification errors are then derived,
demonstrating that Kolmogorov-entropy indeed defines the
complexity rates. Section V presents a comparison between
the stochastic and deterministic frameworks. Contrast to the
common perception that these two are competing frameworks,
we show that they complement each other in binary-sensor
identification. Several examples are presented in Section VI
to illustrate utilities of the approach. Finally, some potential
future research directions are highlighted in Section VII. An
Appendix containing the proofs of several technical results are
included at the end of the paper.

C. Related Literature

This paper explores the issues arising in system identifica-
tion with switching sensors. Traditional system identification
using regular sensors is a relatively mature research area that
bears a vast body of literature. There are numerous textbooks
and monographs on the subject, such as [4], [18], and [19]. The
focus of this paper is the impact of binary sensors on time com-
plexity, identification accuracy, identifiability, and input design,
which is a significant departure from early works of theoretical
developments.

A key issue studied in this paper is time complexity. Com-
plexity issues in identification have been pursued by many
researchers. The concepts of-net and -dimension in the
Kolmogorov sense [17] were first employed by Zames [43] in
studies of model complexity and system identification. Time
complexity in identification was studied in [30], [6], [25],
[44], [38], [35], and [39]–[41]. A general and comprehensive
framework of information-based complexity was developed in
[29]. Milanese is one of the first researchers in recognizing the
importance of worst-case identification. Milanese and Belforte
[20] and Milanese and Vicino [22] introduced the problem of
set membership identification and produced many interesting
results on the subject. Many algorithms for worst-case identi-
fication have been reported; see [21], [22], and the references
therein.

The idea of treating unmodeled dynamics and noise using
mixed assumptions was explored in deterministic frameworks
in [31]. A unified methodology which combines deterministic
identification and probability framework was introduced in [39]
and [40]. Many significant results have been obtained for iden-
tification and adaptive control involving random disturbances in
the past decades [4], [14], [16], [18], [19].
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The utility of binary sensors in this paper carries a flavor that
is related to many branches of signal processing problems. One
class of adaptive filtering problems that has recently drawn con-
siderable attention uses “hard limiters” to reduce computational
complexity. The idea, sometimes referred to as binary reinforce-
ment [11], employs the sign operator in the error or/and the re-
gressor, leading to a variety of sign-error, sign-regressor, and
sign-sign algorithms. Some recent work in this direction can be
found in [5], [7], and [8]. Emerging applications of this idea
in wireless communications, e.g., code-division multiple-access
implemented with direct-sequence (CDMA/DS), have been re-
ported in [42].

Signal quantization and data compression is a typical A-D
conversion process that has been studied extensively in the
signal processing and computer science community. Studies of
impact of quantization errors can be conducted in a worst-case
or probabilistic framework, depending on how quantization
errors are modeled. We refer the interested reader to [1], [12],
and [26] for a comprehensive coverage of this topic. Quantized
sensor information is fundamentally different from binary
sensor information since binary sensors do not provide signal
error bounds which are essential in quantization analysis.

Statistical learning theory [32], [33], especially its applica-
tion to neural network models [3], [13], [15], [23], has led to
some very interesting new development [34], in which dynamic
system identification is studied in neural networks. The problem
considered in this paper is motivated by entirely different appli-
cations. We study different problem aspects and move toward
different directions from neural learning methods. Nevertheless,
the intersection witnessed here due to model structure similarity
makes potential applications of our results in neural learning
theory andvice versa.

II. PROBLEM FORMULATION

For a sequence of real numbers ,
, , will be the standard norm. denotes the -di-

mensional Euclidean space (the set of-tuples of real numbers).
A ball of center and radius (using norm) in
will be denoted by . In
this paper, the base-2 logarithm will be simply written as

.
Consider a single-input–single-output (SISO) linear time-in-

variant stable discrete-time system

where is the disturbance, is the input with
, ; and , satisfying

, is the vector-valued parameter. The input
is uniformly bounded , but can be designed oth-
erwise. The output is measured by a binary sensor with the
known threshold . Namely, the sensor indicates only whether

or . Without loss of generality, assume .2

We will use the indicator function

if
otherwise

(1)

to represent the output of the sensor.
For a given model order, the system parameters can be de-

composed into the modeled part and the
unmodeled dynamics . Then, the system
input–output relationship becomes

(2)

where , and
.

Under a selected input sequence, the output is mea-
sured for . We would like to estimate

on the basis of input/output observation on and .
The issues of identification accuracy, time complexity, and input
design will be discussed in both stochastic and deterministic
frameworks.

III. STOCHASTIC FRAMEWORKS

When the disturbance is modeled as a stochastic process,
both and become stochastic processes. We assume the fol-
lowing prior information on the system uncertainty, including
unmodeled dynamics and disturbance.

Assumption A1):

1) is a sequence of independent and identically dis-
tributed (i.i.d.) zero-mean random variables with distribu-
tion function , which is a continuous function whose
inverse exists and is continuous. The moment gen-
erating function of exists.

2) .

Remark 1: A typical example of the noise satisfying A1)
is Gaussian random variables. The cases of random variables,
whose distribution functions are only invertible in a finite in-
terval [ ], can be handled by applying the technique of
dithers (see Section III-E) or combining stochastic and deter-
ministic binary-sensor identification (see Section V). The as-
sumption of the noise being a continuous random variable is not
a restriction. When one deals with discrete random variables,
suitable scaling and the central limit theorem lead to normal
approximation.

The following formulation was introduced in [39] and [40]. It
treats the disturbance as stochastic but unmodeled dynamics as
unknown-but-bounded uncertainty. Consequently, a worst-case
probability measure is used as a performance index. For a given
set of admissible estimatesof the true parameter
, on the basis of measurements onstarting at with input
, and an error tolerance level, we define

(3)

2Sensors withC = 0 can only detect the sign and usually do not provide
adequate information for identification.
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This is the optimal (over the inputand admissible estimates)
worst-case (over and ) probability of errors larger than the
given level . Then, for a given confidence level

(4)

is the probabilistic time complexity. It is noted that if ,
is reduced to (module a set of probability measure 0) de-

terministic worst-case time complexity for achieving estimation
accuracy .

A. Identification Algorithms and Convergence

For notational simplicity, assume for some integer
. As a result, we can group the input–output equations

into blocks of size

where ,
,

, .
In particular, if the input is -periodic, i.e., ,
, we have and ,

. Moreover, the -period input is said to befull
rank if is invertible. In the following, a scalar function that is
applied to a vector will mean component-wise operation of the
function.

For each (fixed but unknown) and, define

(5)

. Note that the event
is the same as the event , where

and is the the component of .
Denote . Then, is precisely the value of the

-sample empirical distribution of the noise at .
Denote Let

Theorem 1: Under Assumption A1), the following assertions
hold.

a) For any compact subset

(6)

b) converges weakly to , a stretched Brownian
bridge process such that the covariance of (for

) is given by

(7)

Proof: By virtue of the well-known Glivenko–Cantelli
Theorem [2, p. 103], w.p. 1, and the
convergence is uniform on any compact subset. This yields
a). Part b) follows from the convergence of a centered and
scaled estimation error of empirical measures; see, for instance,
[2, p. 105] and [24, p. 95].

Remark 2: The processes considered here is known as the
empirical measure or sample distribution of the underlying se-
quence. Part a) above says that for large, should approx-
imate the corresponding distribution function uniformly

on compact subsets. The Glivenko–Cantelli theorem is the best-
known uniform strong law of large numbers in the literature.

We will find the limit distribution of a suitably scaled se-
quence of so that the convergence rate can be
determined. The central limit theorem gives us hints on using a
scaling factor . The limit turns out to be a Brownian bridge
(see [2, p. 64] and [24, p. 95]). Note that a Brownian bridge is a
function of a Brownian motion defined on [0, 1]. Loosely, it is
a Brownian motion tied down at both endpoints of the interval
[0, 1]. Between the two end points, the process evolves just as a
Brownian motion. Now in the current case, sincecan take real
values outside [0, 1], the Brownian bridge becomes a stretched
one. The terminology “stretched Brownian bridge” follows that
of [24, p. 178].

Since is invertible, we can define

... (8)

When the input is -periodic and full rank, is invertible
and we define the estimate

(9)

Theorem 2: Under Assumption A1), if the input is -pe-
riodic and full rank, then converges to a constant. That is,

w.p. 1 as Furthermore, , where
is the true vector-valued parameter.

Remark 3: If , i.e., no unmodeled dynamics, then this
estimate is unbiased.

Proof: By virtue of Theorem 1, as

Thus the continuity of implies that
w.p. 1. Hence

...
...

Due to the periodicity of the input, we have

...

w.p. 1. Note that . Finally, by A1),

B. Upper Bounds on Estimation Errors and Time Complexity

Next, we shall establish bounds on identification errors and
time complexity for a finite . For a fixed

...

...

(10)
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Recall that . Since
, where is the -induced

operator norm, for any

The inequality is equivalent to

(11)

Note that Since is monotone

(12)

and

(13)

It follows that

(14)

For simplicity, use short-hand notation .
Since is i.i.d., for each , is
also a sequence of i.i.d. random variables. Denote the moment
generating function of by with .
Let
By the definition of , . By the mononicity
of , we have and

. Consequently, an application
of Chernoff’s inequality [27, p. 326] yields

(15)
and

(16)
Combining (14)–(16), we obtain the following upper bounds.

Theorem 3: For any

(17)

Corollary 1: For any , let . Then

a)

(18)

where is defined in (3) and in Theorem
3;

b)

(19)

Proof:

a) By Theorem 3, the selected input and the estimatede-
fined in (9) guarantee that

Since this is valid for all and , (18) follows.
b)

yields (19).
Remark 4: Note that has

mean and variance (20)

In the special case of Gaussian distribution of , is also
normally distributed with moment generating function

Hence
Using , one can then obtain more explicit bounds in
Theorem 3.

C. Lower Bounds on Estimation Errors

To obtain lower bounds on the estimation error when the
above full rank periodic input is used, we use a similar argu-
ment as that of the upper bound case.

From , we have
. In view of (10), the independence of for

implies that for any

(21)
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Our approach of obtaining the lower bounds involves two
steps. First, if the random variables are normally distributed, the
lower bounds can be obtained via the use of an inequality in [9]
together with the properties of a normal distribution. The second
step deals with the situation in which the noises are not normal,
but are approximately normal via Barry-Esseen estimate.

Assume that is normally distributed with mean 0 and
variance . Suppose that is the distribution of the stan-
dard normal random variable, i.e., , where

, . It was shown in
[9, Lemma 2, p. 175] that

for (22)

Since is normally distributed with mean zero and
variance , is also normally distributed with mean

and variance . Therefore,
is normally dis-

tributed with mean 0 and variance 1. As a result, to obtain
the desired lower bounds via (21), for any , it
suffices to consider and

Denote

Then

Therefore, by (22)

(23)

Likewise, denote

Note that . We obtain

(24)

Combining (23) and (24), we obtain the following lower bounds.

Theorem 4: For any

Furthermore, we also obtain the following corollary with
.

Corollary 2: Setting in Theorem 4, we have

D. Lower Bounds Based on Asymptotic Normality

The idea here is to approximate the underlying distri-
bution by a normal random variable. It is easily seen that

converges in
distribution to the standard normal random variable. By virtue
of the Berry–Esseen estimate [10, Th. 1, p. 542], the following
lemma is in force.

Lemma 1: , where
as and is the standard normal random

variable.
Using this lemma, we obtain the following.
Theorem 5: We have the following lower bounds:

where as .
Proof: Note that by Lemma 1

where . Similarly
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where . Define . Using
the estimates of lower bounds as in Theorem 4 for the normal
random variable , the desired result then follows.

E. Dithers

When the disturbance has a finite support, i.e., the density
, or with a finite , the corresponding

is not invertible outside the interval [ ]. The results
in this section are not applicable if for some .
Consequently, the identification capability of the binary sensor
will be reduced. In other words, it is possible that for a selected
input, is a constant (0 or 1) for all, hence no information
is obtained in observations.

One possible remedy for this situation is to add a dither to
the sensor input. Hence, assume the disturbancecontains two
parts: , where is an i.i.d. disturbance
with density and is an i.i.d. stochastic dither, indepen-
dent of , with density . In this case, the density of is
the convolution: . By choosing an appropriate ,

will have a larger support and possess the desired properties
for system identification.

IV. DETERMINISTIC FRAMEWORKS

This section will focus on deterministic representation of the
disturbance. Since some results in this section will be valid
under any norm, the following assumption is given in general

norm. The norm will be further specified if certain results are
valid only for some values.

Assumption A2):For a fixed , to be specified later

1) the unmodeled dynamicsis bounded in the norm by
;

2) the disturbance is uniformly bounded in the norm
by ;

3) the prior information on is given by
for some known and

.
For a selected input sequence, let

be the observed output. Define

and

where is the radius of the set in norm. is the op-
timal worst-case uncertainty after steps of observations. For
a given desired identification accuracy, the time complexity of

is defined as

We will characterize , determine optimal or suboptimal in-
puts , and derive bounds on time complexity .

A. Lower Bounds on Identification Errors and Time
Complexity

We will show in this subsection that identification time com-
plexity is bounded below by the Kolmogorov entropy of the
prior uncertainty set.

Case 1: Disturbance-Free Observations and No Unmodeled
Dynamics:

Theorem 6: Let and . Suppose that for a given
the prior uncertainty . Then, for any
, the time complexity is bounded below by

Proof: in has volume , where the
coefficient is independent of. To reduce the identification
error from to below , the volume reduction must be at least

.
Each binary sensor observation defines a hyperplane in the

parameter space . The hyperplane divides an uncertainty set
into two subsets, with the larger subset having volume at least
half of the volume of the original set. As a result, in a worst-case
scenario one binary observation can reduce the volume of a set
by at best. Hence, the number of observations required
to achieve the required error reduction is at least

or
It is noted that is precisely the Kolmogorov

-entropy of the prior uncertainty set [17], [43]. Hence,
Theorem 6 provides an interesting new interpretation of the
Kolmogorov entropy in system identification, beyond its
application in characterizing model complexity [43]. Theorem
6 establishes a lower bound of exponential rates of time com-
plexity. Upon obtaining an upper bound of the same rates in the
next subsection, we will show that the Kolmogorov-entropy
indeed defines the time complexity rates in this problem. Next,
we present an identifiability result, which is limited to .

Proposition 1: The uncertainty set is not
identifiable.

Proof: For any , the output

It follows that , . Hence, the observations could not
provide further information to reduce uncertainty.

Case 2: Complexity Impact of Bounded Disturbances:In the
case of noisy observations, the input–output relationship be-
comes

(25)

where . For any given , an observation on
from (25) defines, in a worst-case sense, two possible uncer-
tainty half planes
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Uncertainty reduction via observation is possible only if the un-
certainty set before observation is not a subset of each half plane
(so that the intersection of the uncertainty set and the half plane
results in a smaller set).

Theorem 7: If , then for any either
or . Consequently, in a

worst-case sense is not identifiable.
Proof: Suppose that . Then, there exists

such that .
satisfies . We have

for any . This implies that .
The opposite case can be proved similarly.

Theorem 7 shows that worst-case disturbances introduce ir-
reducible identification errors of size at least . This is a
general result. A substantially higher lower bound can be ob-
tained in the special case of .

Consider the system . Suppose that at time
the prior information on is that with

for identifiability (see Proposition 1). The uncertainty
set has center and radius .
To minimize the posterior uncertainty in the worst-case sense,
the optimal can be easily obtained as .

Theorem 8: If , then the uncertainty set [ ] cannot
be reduced if .

Proof: Let . Then,
. For any , noting , we

have , and

Hence, the observation does not provide any
information.

Similarly, if , we can show that all will
result in . Again, the observation does not reduce
uncertainty.

At present, it remains an open question if Theorem 8 holds
for higher order systems.

Case 3: Complexity Impact of Unmodeled Dynamics:When
the system contains unmodeled dynamics, the input–output re-
lationship becomes

(26)

where . We will show that unmodeled dynamics will
introduce an irreducible identification error on the modeled part.

For any , the set ,
where .

Theorem 9: If , then in a worst-case sense, for any,
is not identifiable.

Proof: Under (26), an observation on provides obser-
vation information

In the worst-case sense, can be reduced by this ob-
servation only if is neither a subset of nor .

Suppose that . We will show that
. Indeed, in this case there exists

such that . Since
any satisfies , we have

This implies .

B. General Upper Bounds

In this section, general upper bounds on identification errors
or time complexity will be established. For a fixed , sup-
pose that the prior information onis given by .
For identifiability, assume that the signs of have been de-
tected and .3 Denote

. We will establish upper bounds
on the time complexity for reducing the size of uncer-
tainty from to , in norm.

Case 1: Disturbance-Free Observations and No Unmodeled
Dynamics: Let and and consider .

Theorem 10:Suppose that . Then, the time
complexity to reduce uncertainty from to is bounded by

(27)

Since is a constant independent of, this result, together
with Theorem 6, confirms that the Kolmogorov entropy de-
fines the time complexity rates in binary-sensor identification.
The accurate calculation for remains an open and difficult
question, except for (gain uncertainty) which is discussed
in the next subsection.

The proof of Theorem 10 utilizes the following lemma. Con-
sider the first-order system , ,
where and . Let .

3The sign ofa can be obtained easily by choosing an initial testing sequence
of u. Also, those parameters withja j < C=u can be easily detected. Since
uncertainty on these parameters cannot be further reduced (Proposition 1), they
will be left as remaining uncertainty.a defined here will be applied to the rest
of the parameters. The detail is omitted for brevity.
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Lemma 2: There exists an input sequencesuch that
observations on can reduce the radius of uncertainty to

.
Proof: Let [ ] be the prior uncertainty before a

measurement on . Then, . By
choosing , the observation on will
determine uniquely either if ; or

if . In either case, the uncertainty
will be reduced by . Iteration on the number of observations
leads to the conclusion.

The proofs of this subsection rely on the following idea.
Choose except those with index

, . This input design
results in a specific input–output relationship

...

(28)

In other words, within each block of observations,
each model parameter can be identified individually once. Less
conservative inputs can be designed. However, they are more
problem dependent andad hoc, and will not be presented here.

Proof of Theorem 10:By Lemma 2, uncertainty radius
on each parameter can be reduced by a factor after
observations. This implies that by using the input (28), after

observations, the uncertainty radius can
be reduced to

Hence, for it suffices to have

Case 2: Noisy Observations:Consider
, where .

Theorem 11:Suppose . Let
and . If

and , the time complexity for reducing
uncertainty from to is bounded in norm by

(29)

Proof: Using the input in (28), the identification of the
parameters is reduced to identifying each param-
eter individually. Now for identification of a single parameter

, we can derive the following iterative un-
certainty reduction relationship. If the prior uncertainty atis
[ ], then the optimal worst-case input
can be shown as .4 The posterior uncertainty
will be either [ ], if ; or
[ ], if . Both have the radius

Starting from , after observations, we have

To achieve , it suffices

Following the same arguments as in the proof of Theorem 10,
we conclude that

will suffice to reduce the uncertainty from to in norm.
Case 3: Unmodeled Dynamics:Consider

. The results of this case hold for only. The unmod-
eled dynamics introduces an uncertainty on the observation on

: , .
Theorem 12:Suppose . Let

, .

(30)

Proof: By using the input (28), the identification of
is reduced to each of its components. For a scalar system

, since we can apply
Theorem 11 with replaced by . Inequality (30) then
follows from Theorem 11.

C. Special Cases: Identification of Gains

In the special case , explicit results and tighter bounds
can be obtained. When , the observation equation
becomes

4More detailed derivations are given in the next subsection.
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Assume that the initial information on is that
, , , with radius .

Case 1: . It is noted that this is a trivial identi-
fication problem when regular sensors are used: After one input

, can be identified uniquely.
Theorem 13:

1) Suppose the sign of is known, say, , and
. Then, the optimal identification error

is and the time complexity is
.

If at , the information on is that
, then the optimal is

(31)

where and are updated by

if
if

if
if

2) If and have opposite signs and

then the uncertainty interval ( ) is not identifiable.
Furthermore, in the case of and ,
if and then the time complexity

is bounded by

Proof: In Appendix.
In this special case, the actual value does not affect

identification accuracy. This is due to noise-free observation.
The value will become essential in deriving optimal identifi-
cation errors when observation noises are present. is a
singular case in which uncertainty oncannot be reduced (in the
sense of the worst-case scenario). Indeed, in this case one can
only test the sign of . It is also observed that the optimal
depends on the previous observation . As a result,
can be constructed causally and sequentially, but not offline.

Case 2: . Here, we assume
. Prior information on is given by ,

and .
Theorem 14:Suppose that and

. Then

1) the optimal input is given by the causal mapping
from the available information at

The optimal identification error satisfies the iteration
equation

(32)

where and are updated by the rules

if

if

2) for all ;
is monotone increasing, and

are monotone decreasing;
.

3) At each time , uncertainty reduction is possible if and
only if .

Proof: In the Appendix.
Theorem 15:Let and

. Then, under the conditions and notation of
Theorem 14

1) for , the optimal identification error is bounded
by

(33)

2) Let and .
Then the time complexity for reducing uncertainty
from to is bounded by

3) There exists an irreducible relative error

(34)

4) The parameter estimation error is bounded by

(35)

Proof: In the Appendix.
Remark 5: It is noted that the bounds in item 2) of Theorem

15 can be easily translated to a sequential information bounds by
replacing with the online inequalities .

Case 3: . Let .
Then, is the maximum up to time . Since we
assume no information on, except that , it is clear
that where .

Let . Then
.

Theorem 16:Suppose that , ,
.
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1) The optimal input , which minimizes the worst-case
uncertainty at , is given by the causal mapping from the
available information at

(36)

The optimal identification error atsatisfies the iteration
equation

(37)

where and are updated by the rules

if

if

2) The uncertainty is reducible if and only if
.

3) For , the optimal identification error is bounded
by

(38)

where and
.

4) Let and .
Also, denote ,

. Then, the time complexity for
reducing uncertainty from to is bounded by

(39)

Proof: In the Appendix.
Note that and ; and

as , uniformly in .

V. DISCUSSIONS ONCOMBINED STOCHASTIC AND

DETERMINISTIC BINARY-SENSORIDENTIFICATION

The theoretical development of this paper highlights the dis-
tinctive underlying principles used in designing inputs and de-
riving posterior uncertainty sets in stochastic and deterministic
information frameworks.

In the deterministic worst-case framework, the information
on noise is limited to its magnitude bound. Identification prop-
erties must be evaluated against worst-case noise sample paths.
As shown earlier, the optimal input is obtained on the basis of
choosing an optimal worst-case testing point (a hyperplane) for
the prior uncertainty set. When the prior uncertainty set is large,

this leads to a very fast exponential rate of uncertainty reduc-
tion. However, when the uncertainty set is close to its irreducible
limits due to disturbances or unmodeled dynamics, its rate of un-
certainty reduction decreases dramatically due to its worst-case
requirements. Furthermore, when the disturbance magnitude is
large, the irreducible uncertainty will become too large for iden-
tification error bounds to be practically useful.

In contrast, in a stochastic framework, noise is modeled by
a stochastic process and identification errors are required to be
small with a large probability. Binary-sensor identification in
this case relies on the idea of averaging. Typically, in stochastic
identification the input is designed to provide sufficient exci-
tation for asymptotic convergence, rather than fast initial un-
certainty reduction. Without effective utilization of prior infor-
mation in designing the input during the initial time interval,
initial convergence can be very slow. This is especially a severe
problem in binary-sensor identification since a poorly designed
input may result in a very imbalanced output of the sensor in
its 0 or 1 values, leading to slow convergence rate. In the case
of large prior uncertainty, the selected input may result in non-
switching at the output, rendering the stochastic binary-sensor
identification inapplicable. On the other hand, averaging distur-
bances restores estimate consistency and overcomes a funda-
mental limitation of the worst-case identification.

Consequently, it seems a sensible choice of using the deter-
ministic framework initially to achieve fast uncertainty reduc-
tion when the uncertainty set is large, then using the stochastic
framework to modify estimation consistency. In fact, we shall
demonstrate by an example that these two frameworks comple-
ment each other precisely, in the sense that when one framework
fails the other starts to be applicable. Consider the first-order
system , where is i.i.d. but with sup-
port on [ ]. Suppose that the prior information onis given
by , with .

First, we will show that if is large, then some subsets of
cannot be identified by the stochastic averaging approach. More
precisely, we note that the stochastic averaging method requires
that one select a constant such that the following
condition is satisfied: and
. Under this condition, the distribution function is invert-

ible at the convergent point of the empirical distribution .
Consequently, The results of Section III can be applied to iden-
tify .

However, if , then for any choice of , either
or , that is, the above

condition is always violated. Indeed, suppose that
, for all possible . In particular, this implies that

for , we have
or equivalently .

Now, consider the subset .
For any , we have

This implies that .
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On the other hand, if we apply the deterministic identification
first to reduce uncertainty on first, by Section IV, the uncer-
tainty can be precisely reduced to

. It is easy to show that for the stochastic binary-
sensor identification is applicable since we have

If then

If then

Otherwise or

The following numerical example is devised to further illus-
trate these ideas. Consider the system ,
where with a uniform distribution in [ ]. The
true value . Suppose that the threshold , dis-
turbance bound , and prior information on is that

. Deterministic identification starts with a fast un-
certainty reduction, but settles to a final irreducible uncertainty
set [167.6, 251.4], as shown in of Fig. 1(a).

On the other hand, if one elects to use stochastic framework,
it is critical to find an input value that will cause the sensor to
switch. The large prior uncertainty onmakes it difficult to find
such an input. For instance, and imply
possible values of in [0.05,50]. A sample of 10 randomly
selected values in [0.05,50] gives 20.8123, 47.1245, 0.5278,
19.4371, 18.7313, 0.5676, 25.4479,16.9107, 9.1140, 44.1065,
all of them fail to be a viable input ( for
all ).

Next, we combine deterministic and stochastic approaches.
First, the deterministic approach is used to reduce the uncer-
tainty set to, say, [165, 255]. This is achieved after ten observa-
tions. We then switch to the stochastic framework. Select

This leads to , which satisfies the
condition of stochastic binary-sensor identification (invertibility
of ). Upon changing to stochastic identification, the output

is observed. The estimate onis calculated by (9). The
trajectory of the estimate is shown in Fig. 1(b).

VI. I LLUSTRATIVE EXAMPLES

In this section, we will use two examples to illustrate how
the algorithms developed in this paper can be applied to address
the motivating issues discussed in Section I. In example 1, we
will show that by using binary sensors for identification one can
achieve output tracking for reference set points that are different
from the sensor switching point. Example 2 demonstrates that
the common practice in industry applications, in which two bi-
nary sensors are used to force a controlled variable in the set
bounds, does not impose additional difficulties in applying our
results to output tracking control. Since online identification (es-
pecially persistent identification problems in which identifica-
tion is needed beyond its initial parameter convergence) is only
meaningful when system parameters drift slowly but substan-
tially from their initial values, we use a slowly varying system
to demonstrate our methods in Example 2.

Example 1: Tracking Control Using One Binary Sensor.
Suppose that the goal of control is to set , where
is a desired reference point. A binary sensor is deployed with

(a)

(b)

Fig. 1. Comparison of stochastic and deterministic frameworks.
(a) Deterministic identification. (b) Combined identification.

a threshold . Traditional control in this problem is to design
a feedback control that will maintain close to . How-
ever, if the sensor threshold is not equal to the target: ,
the traditional feedback will fail to drive to the target .
Using the identification approaches to estimate system param-
eters first, however, one can potentially control to a small
range around after identification.

Let the true system be5

with and . The disturbance is i.i.d. with
uniform distribution in [ ]. The target output is .
Suppose that the sensor has threshold . . Let
the prior information on the parameters be , .

By the input (28) with , we have index ,
or 3, . Hence, the input sequence is

. The
corresponding input–output relation becomes

By choosing and optimally for identification
of individual parameters, we can reduce parameter uncertainty
first to, say, a radius of 0.5 on each parameter.

5For simplicity, we use a minimum-phase system for this example. As a result,
after identification, tracking control can be designed by simple inversion. In the
case of nonminimum-phase plants, tracking design should be done by optimal
model matching such asH control. In both cases, the identified model can be
used to track an output that differs from the threshold.
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Fig. 2. Tracking control with one binary sensor.

At the end of the identification phase, the centers of the uncer-
tainty sets for the parametersand are used as the estimates

and . Then, the control for tracking is calculated by

Fig. 2 shows the uncertainty sets (upper and lower bounds) on
and during the identification phase, and outputs in both

identification and tracking control phase. It is seen that after
binary-sensor identification, one can achieve tracking control,
even when the desired output value is far away from the sensor
threshold. It should be noted that the large fluctuations on
during the identification phase is unavoidable due to the large
prior uncertainty set [1,51] assumed on parameters.

Example 2: Tracking Control Using Two Binary Sensors.
It is noted that if system parameters in Example 1 are varying
with time, then parameter drifting may cause tracking perfor-
mance to deteriorate without being detected by the sensor. In
Example 1, escaping of toward infinity will not be detected
since . One possible remedy is to employ two binary
sensors with the thresholds . When parameter
drifting causes across these thresholds, reidentification will
be employed. This is illustrated later.

Suppose that the parameters of the system change with time,
drifting slowly from the current values , to the
new values , . A new binary sensor is added
with threshold . Fig. 3 shows the impact of this pa-
rameter variation on the output. When increases to cross

Fig. 3. Tracking control with two binary sensors.

the threshold , identification is employed again. This identi-
fication captures the new values of the parameters and improves
tracking performance.

VII. CONCLUSION

Identification with binary-valued sensors is of practical
importance and theoretical interest. The main findings of this
paper reveal many distinctive aspects in such identification
problems from traditional identification. Furthermore, the
relationships between time complexity and the Kolmogorov en-
tropy and between stochastic and deterministic frameworks in
their identifiability provide new understandings of fundamental
links in identification problems.

Binary-sensor identification introduced in this paper was ini-
tially motivated by several typical industrial control problems. A
limited investigation to different application areas has generated
many examples in a broader range of applications, including bi-
ology, economy, medicine, and further links to other branches
of information processing methodologies. It is important to mo-
tivate further investigations by studying these application areas
vigorously and rigorously.

Potential extensions of the work reported in this paper
are numerous, including from the MA models to ARMAX
models, from linear systems to Wiener or Hammerstein non-
linear models, and from input–output observations to blind
identification.
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APPENDIX

A. Proof of Theorem 13

1) The identification error and time complexity follow di-
rectly from Theorems 6 and 10 with . As for the
optimal input, notice that starting from the uncertainty
[ ] an input defines a testing point
on . The optimal worst-case input is then obtained by
placing the testing point at the middle. That is

which leads to the optimal input and result in posterior
uncertainty sets.

2) When the input is bounded by ,
the testing points cannot be selected in the interval
[ , ]. Consequently, this uncertainty set
cannot be further reduced by identification. Furthermore,
by using and as the first
two input values, can be determined as belonging
uniquely to one of the three intervals: [ ),
[ ], [ ]. By taking the
worst-case scenario of ,
the time complexity for reducing the remaining uncer-
tainty to is . This leads to
the upper bound on . The lower bound follows from
Theorem 6 with .

B. Proof of Theorem 14

1) Since , the relationship (25) can be written as
.

The observation outcome will imply that

which will reduce uncertainty from
to [ ] with error

. Similarly, im-
plies and
with . In a worst-case
scenario, . Consequently, the
optimal can be derived from . Hence, the
optimal is the one that causes , namely

or

The optimal identification error is then

2) We prove
by induction. Suppose that

. Then, we have
and , which, respec-

tively, leads to
in the case where ,

and
in the case where .

Thus, by the initial condition that
we have

for all .
By , we

have and
, which gives and

in
the case where , and and

in the
case where . Thus, is monotonely
increasing and { } is monotonely decreasing.

Furthermore, by and
we obtain ,

i.e., . Hence,
is monotonely decreasing.

The dynamic expression (32) can be modified as

(40)

or

(41)

By taking on both sides of (40) and
(41) we get and

. This leads to
.

3) From (32), it follows that the uncertainty is reducible if
and only if

. This is equivalent to
.

C. Proof of Theorem 15

1) From (40) and the monotone decreasing property of,
we have

and from (41) and the monotone increasing property of

The results follow from ,
, and

.
2) From item 2 of Lemma 14, it follows that the error

is monotonely decreasing. Thus, the upper
bound on the time complexity is obtained by solving the
inequality for the smallest satisfying

Similarly, the lower bound can be obtained by calculating
the largest satisfying
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3) This follows from (33) and Item 2 of Lemma 14, which
implies the existence of .

4) From the last two lines of the proof of Item 2 of
Lemma 14 it follows
and . This, together with
(34),gives (35).

D. Proof of Theorem 16

1) The results follow from the definition of and Theorem
15, with replaced by .

2) From (37) and (36), it follows that the uncertainty is re-
ducible if and only if

. This is equivalent to
or ,

since .
3) By (37), we have

(42)

and

(43)

Further, from for all

and

Then, the inequalities in (38) can be obtained by iterating
the previous two inequalities in.

4) Since for all ,

which implies that . This leads
to and

. Hence

(44)
As a result, the inequalities of Theorem 15 can be adopted

here to get (39).
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